
AD-A283 760

EVALUATION OF PROJECT SELECTION TECHNIQUES
FOR

PAVEMENT NETWORK MAINTENANCE AND REPAIR

A Scholarly Paper Presented to

The Faculty of The Geotechnical Engineering Program

University of Maryland at College Park

by

LT Thomas L. Wood, CEC, USN

In Partial Fulfillment

of the Requirements for the Degree of

Master of Science (Civil Engineering)

ELECTE Approved:
AUG 2 9 1994

S F D Faculty AdvisorlDate

Director, Geotechnical
This docuxnt has been approved Program
for public trseass and sa.le; its
distribution is u•hlimte4I

(•94-27556 94 8 26
SEuIh48 6 102



ABSTRACT

Different approaches have been suggested for determining the optimal
mix of repair projects for a pavement network. These methods range from
random selection to sophisticated mathematical optimization models.

This paper presents an analysis of several questions regarding the
effectiveness of three possible selection methods.

First, the performance of three separate single year project selection
methods on different size networks is assessed over a broad funding spectrum.
The results indicate that as funding levels increase, the benefit obtained by
different selection methods converge. In addition, as the size of the network
increases, the convergence tends to occur at progressively lower funding levels.

Second, the effect of the performance prediction models on these same
selection methods is assessed by altering the coefficients of the models to
predict both faster and slower deterioration of the network. The "select sets" of
projects created by priority ranking selection and Knapsack IP selection at three
separate funding levels are compared to determine how much variation is
introduced by the changes in the performance prediction. With a 30%
acceleration and deceleration of the deterioration curves, there was little change
in the optimal project set created by either method.

Finally, a modified Monte Carlo model is used to assess the general
shape of the solution space. The results suggest that the solution space is
relatively flat except in the immediate vicinity of the optimum. This, in turn,
suggests that a Monte Carlo approach to this problem would require a large
number of trials to approximate the optimum. This finding conceptually supports
findings in this study and others, as wel' as the intuitive observation, that random
maintenance and repair strategies perfkum poorly compared to more rational
approaches. Since only a few sets of repair projects are near the optimum, the
chances of a random selection matching one of these near optimal project sets
are relatively small.

INTRODUCTION

Providing the maximum benefit to the network for a given expenditure of
Maintenance and Repair dollars is a primary goal of any pavement management
system. It has been argued (Haas, et. al. 1985 & Lytton, 1985 ) that to be truly
effective, a system must be able to:

1) select the best repair strategy for a given segment of the network
2) select that mix of repair projects for the entire network that provides the
maximum benefit without exceeding the allowable budget



3) be able to consider the temporal distribution of projects

There are two distinct categories of optimization, Annual Optimization and
* True Optimization.

Annual optimization does not consider the temporal distribution of
projects, instead it contains an implicit assumption that the combination of
optimal project solutions for each given year will provide an optimal solution over

0 time.

True optimization, however, answers these three questions
simultaneously:

1) which repair strategy should be used for a given segment ?
0 2) which segments should be repaired ?

3) when should the repairs be accomplished ?

(Lytton, 1985 ).

In order to address these three questions simultaneously, a model or
* selection procedure must be complex and computationally intensive. In fact, the

procedure to answer each question individually can range from simple to
extremely complex. Is the additional computational effort involved in the more
sophisticated approaches warranted? What effect do changing funding levels
have on the effectiveness of different selection techniques? How sensitive are

• selection methods to the predictive accuracy of the performance models used to
predict the conditions of the pavement? What is the shape of the solution space
of this problem, and what effect might that shape have on the performance of
selection methods?

* This study was conducted as a single year analysis, and was limited to
rehabilitation options involving AC Overlays only. Therefore, questions I and 3,
the type and timing of projects are not considered. The focus is instead on
answering the above questions in the context of the annual process of selecting
segments to be repaired.

PREVIOUS WORK

Using the Illinois DOT Pavement Management System (ILLINET),
Mohseni, et. al., 1993, studied the effectiveness of six different project selection
methods in a multi-year context: Accesion For

1) Total needs NTIS CRA&M
2) Random selection DTIC TAB 0
3) Ranking (worst-first) Unannounced 0

Justification
4) Incremental Benefit Cost ..........................

5) Long Range Optimization BS
6) Linear Programming Di ibuýion I

Availability Codes

2 Dist Avail and I or
D Special



Dr. Mohseni's study spanned a ten year analysis period, and attempted to
maximize the benefits to the 'ted pavement network given a total budget for
the network of $ 75 million, d uted evenly over the analysis period. A total
needs analysis was performed first to determine all of the required repair
projects for the selected road network, resulting in a total of $ 90.1 million in
identified repair projects.

First, a random selection of projects to attempt to repair all segments
below a critical performance threshold was done to provide a baseline criteria,
and to show that purely random decisions performed poorly with respect to more
rigorous approaches. This was followed by a project selection process using
methods 3 through 6, above. The advant-!"- and disadvantages of each of the
selection methods are outlined in Mohsei. a. " '393. Some of those points
are highlighted here, along with additional observations:

1) A strictly "worst-first" ranking system is overly simplistic and is
therefore not an especially practical system in real implementations. As
will be discussed later, many of the "optimization* criter~a that are
implicitly contained in more developed ranking systeins are left out of this
approach. This could partially account for the extremely poor
performance of the ranking approach in this study.

2) The random approach considered only those segments whose CRS
value was less than 7 at the beginning year of the analysis period. Aff of
these segments "qualified" for rehabilitation. A random number generator
was then used to select the timing and the type of rehabilitation technique
applied to the segment. In addition to being random, this approach has
two distinct disadvantages. First, only those segments whose condition
was poor enough at the beginning of the analysis period were considered
for rehabilitation. This means that even as other segments fell below the
threshold as the analysis progressed through time, they were ineligible for
rehabilitation. Second, the random application of rehabilitation strategies
to segments can result in poor benefit realization for each segment, since
there is no guarantee that the strategy applied to the segment is even
appropriate for the segment. A better approach might be to either use a
reasonable "decision tree" process to determine the appropriate strategy,
or pick only one repair option and then apply random selection of the
segments and the timing. The latter approach is followed for the study
outlined in this paper.

3) The long range optimization method cannot consider yearly budget
constraints, only the overall budget for the analysis period. Hence, the
practical utility of this method is limited, except as a comparison to other
solutions.
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4) The Benefit Cost Ratio and Incremental Benefit Cost Ratio techniques
are annual optimization methods. In many ways they are conceptually
similar to the single and multi-dimensional Knapsack Integer
Programming techniques, respectively. Therefore, the results from the
Knapsack technique will be compared to the results from the BC/IBC
techniques.

5) The Linear Programming solution was used as a substitute for Integer
Programming because of expected computational problems in solving the
IP problem. While Dynamic Programming solutions of the IP problem
become intractable rapidly with increasing numbers of decision variables,
a number of other approaches are available. Many of these algorithms
exhibit "reasonable* performance with "n" values into the tens of
thousands (Martello and Toth, 1990). It is expected that an exact or
approximate solution to even the complex multi-year problem is possible
using some of these algorithms.

The funding level of $ 75 million used corresponds to approximately 83%
of the total needs based on the needs analysis of $ 90.1 million. Therefore the
results in Tables 1. and 2. will be used for comparison with the 80% funding
level results in the conclusion of this study.

Using a benefit measurement of uVehicle Miles Traveled on Acceptable
Pavements' or VMT-A, the study showed that at a constant funding level
methods 4-6 produced similar benefits, while methods 2 and 3 produced
significantly lower benefits. The results are summarized in Table 1., below:

% Increase In VMT-A
Method VMT-A, (bIlilon %

____ ___ ____ ___ ___ vehilde miles) Increase
Random Selection 2.98 -
Worst-Flirst Ranking 3.82 28%
IBC 5.84 89%
Long Range Optimization 6.02 102%
Unear Programming 5.63 89%
Table 1.

The VMT-A benefit criteria is a composite index, calculated as follows:

VMT -A = AADT * Adequate Length * Life * (365)

Where:

AADT: The Annual Average Daily Traffic
Adequate Length: Length of pavement above condition threshold
Life: Expected life
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This benefit coefficient has the disadvantage of being strictly a "thresholdn
benefit. Any pavement which meets the minimum criteria to be called "adequate*
is considered as part of the benefit for as long as it is expected to be adequate.
No additional credit is taken for pavements that are better than adequate. This
may be somewhat compensated for by the fact that presumably these segments
would have a longer Life above the adequate threshold.

Another possible criteria for measuring the effectiveness of the repair
strategies is the length weighted average condition index (in this case CRS).
Using this criteria, the range of variation is considerably smaller, as shown in
Table 2., below.

% Increase in CRS
Method CRS-Years %

Increase
Random Selection 6.49 -
Worst-First Ranking 6.74 4%
IBC 6.82 5%
Long Range Optimization 6.99 8%
Linear Programming 6.81 5%
Table 2.

This benefit is calculated as the difference of the areas under the
CRS/Time curves for the segment. While this benefit coefficient takes credit for
the full improvement to the pavement, it has the disadvantage of not considering
the effects of traffic on network benefit. Since traffic level is not included in the
benefits, a repair to a segment with a low AADT provides the same net benefit to
the overall network as the same repair to a similar segment with a high AADT.
In reality, this is not true, as a more heavily traveled segment benefits more
travelers.

In addition to the above two criteria, Dr. Mohseni describes two additional
criteria, 'Added Pavement Life' and "User's Benefits.' Added Pavement Life is
similar to CRS above, but results in a benefit coefficient that does not account
for either traffic levels or increases in serviceability above the threshold value,
hence combining the disadvantages of the VMT-A and CRS criteria. User's
Benefits attempts to calculate the cost of user operation over the original and
rehabilitated pavement sections. The difference between these two values is the
"benefit' to the user's from the rehabilitation. Given the difficulty of defining
user's costs, this method may be difficult to use properly.

As an additional facet of his study, Dr. Mohseni varied the budget
provided to the network as a percentage of the identified needs to study the
effects on network performance using different project selection methods. For
all four of the above benefit coefficients, the range in performance variation by
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the different selection methods either remained constant or increased with
increasing funding levels. As will be more fully described later, this contrasts
with the results of this study.

ANALYSIS METHODOLOGY

General

The first phase of this study evaluated the effectiveness of three different
project selection processes at various funding levels for a single year analysis.
These processes are:

1) Random Selection
2) "Knapsack" Integer Programming
3) PMAP Priority Ranking

As in the Mohseni study, a method of random selection is used as a baseline
criteria. However, the random selection is limited to the selection of the
segments, not the type of rehabilitation option or the timing. As noted earlier,
both the type of repair option and the timing are constrained by the scope of the
study. Integer programming is used as an alternative to Incremental Benefit
Cost (IBC). The Delaware DOT PMAP system's Priority Ranking is used instead
of the "worst-first" ranking used by Dr. Mohseni. Multi-year analysis techniques
were not considered.

Network to be Analyzed

The State of Delaware has developed, under contract with PCS/LAW Inc.
a statewide pavement management system designated as PMAP (Smith, et. al.
1993). This system is composed of several modules, including:

1) Database
2) Analysis and Forecasting Modules
3) Report Generation

* The analysis and forecasting module performs selection of projects to
repair the network. The analysis takes place in two stages, answering
sequentially optimization questions 1 and 2 noted above.

First, the pavement condition data contained in the database module is
* used to forecast the condition of the pavement, including the PSI, Surface

Distress, Roughness Number and Friction, forward in time to the analysis year.
These predicted values are used by the system to analyze the network and
determine what projects, if any, need to be undertaken to improve the Safety,
Serviceability, Friction, or Capacity of each segment. These are essentially

* "project level" decisions as defined by Cook and Lytton, 1987, except that again,
timing is not considered. The analysis identifies all of the "now" needs and
determines the appropriate repair to fix the problem "now."
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Second, a priority is assigned to each segment based on the following
factors:

1) functional class
2) AADT Level
3) "score level" defined as a composite condition index based on
structural, surface distress, ride quality, friction, and overall pavement
condition.
This resultant composite priority is then used to rank the projects in order.

The values of the priority numbers for each of the above factors can be altered
by the user to reflect changing network priorities. Budgetary constraints for each
category of work, (safety, serviceability, etc.) are then applied, resulting in a
select set of the most important projects that can be done with the available
funding. This second stage analysis, essentially the "which projects" part of the
"network level" decision process, is the focus of the remainder of this study.

PMAP allows the user to select roads by various criteria for inclusion in
the analysis. Three separate road networks were chosen for the first stage of
this analysis. The first network was relatively small, and was primarily used to
develop the analysis process. Network 2 was a larger selection of segments,
consisting solely of segments in the HPMS category. Network 3 was the final
and largest set chosen and was selected in order to try to validate trends in the
data apparent from the first two networks.

The list of required projects for each subset road network was developed
using the needs analysis option in the PMAP program. This analysis develops
an unconstrained list of projects required to maintain the network. In all cases,
the default cost data contained in the PMAP program was used to develop the

0 costs for each project identified by the needs analysis.

It was assumed for the purposes of this study that the decision tree used
in PMAP to determine the type of repair to be performed produces an "optimal"
repair strategy for the individual segments. However, since the options for repair
have been limited by the scope of the study to AC Overlays, the decision
process is essentially limited to thickness designs.

Objective Functions

There are two steps that must be accomplished for any rational project
selection technique to be applied:

1) Quantify the costs and benefits of each proposed activity
2) Apply some reasonable decision process that selects a set of projects
that provides the most benefit to the network as a whole without

0 exceeding the allowable budget
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Quantifying the benefits and costs is done by assigning "value" to each state of
repair of the network and by determining the cost to achieve that state. The
""reasonable" decision process can take any one of several forms, from priority
ranking to optimization.

A significant difference between ranking methods and optimization
methods is that optimization methods require the explicit enumeration of the
objective functions and their associated costs and benefits (Lytton, 1985), while
ranking systems contain these implicitly. As noted earlier, a simplistic ranking
system ignores many criteria, while a more sophisticated system will tend to
reflect the same objectives as those explicitly contained in an optimization
objective function. For example, the benefit coefficient used in this analysis
includes the AADT as a measure of the number of users who benefit from (or
suffer from) changes in the condition of a pavement section. In the PMAP
priority ranking system, three levels of AADT, (low, medium and high), are used
to assign the composite priority. A distinct advantage to the optimization
procedure is that the effects of each factor are readily apparent, where they may
be somewhat hidden in a ranking system. The disadvantage is that the
formulation of the objective functions can be difficult and time consuming.

The objective criteria for the benefit to be gained by improvements to a
given section shO'd reflect the influence of the following factors:

1) Traffic levels: more heavily traveled segments contribute more to (and
detract more from) the overall performance of the network.
2) Serviceability: segments with a higher serviceability are more
beneficial to the network than segments with lower serviceability.

0 Therefore, a reasonable ubenefit coefficient" is defined as follows:

b = AADTj *lj _&PSI1

L

40 Where:

bj : benefit of repair of segment "i
lI: Length of segment "j"
L: Total length of network being analyzed
AADTj: predicted AADT for segment "j
A PSIj: Increase in serviceability for segment "j"

In addition to the above two factors, in multi-year, multi-repair option
analyses, the durability of repairs becomes important. Conversion of the above
benefit coefficient to a multi-year, multi-option coefficient is accomplished by
plotting the curve of the original benefit coefficient vs. time, and the benefit
coefficient after repair vs. time, then determining the net area under the curves.
The difference in areas of the benefit/time curve for the original segment and for
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different repair options is the benefit gained by the network for each repair
option. In the analysis conducted for this paper, the use of the area under the
curves is not required due to the annual nature and the limitation to a single
repair option. However, this approach would be useful in the multi-dimensional
knapsack analysis discussed later.

This benefit coefficient is a synthesis of the length-weighted pavement
condition (Average network CRS), and traffic (VMT-A) used by Dr. Mohseni. As
a result, it avoids the limitations of the individual benefit coefficients noted
above. Full credit is taken for the condition of the pavement above the minimum
acceptable threshold, and traffic effects are accounted for. As noted above, the
durability of the repairs is not explicitly included until the coefficient is extended
over time. However, the greater the initial increase in serviceability (A PSI) from
any repair, the longer the pavement can be expected to remain above a
minimum serviceability.

This benefit coefficient is not expressed in dollars. The conversion of the
above benefit coefficient to a "dollar benefit per point" is possible by following a
process similar to that used by Dr. Mohseni in defining the User's Benefits
category described earlier. However, it was not done for this study for two
reasons:

1) The Integer Programming technique being used depends upon the
0 relative ratios between the benefits and costs for each segment repair

option. The introduction of a constant conversion factor into this term
would not alter the relative position of each option.

2) The real dollar value of costs and benefits can be difficult to
0 determine.

The costs associated with the decision to repair or not repair are as
follows:

1) Cost of performing repair
* 2) Increased user costs during repair

3) Increased cost of repairs if repairs are deferred to a later time

Increased user costs during construction can be included in the project
cost. However, as with other user costs they can be difficult to determine, and
for this reason they are not included in this analysis. For purposes of a single
year analysis, there is no increased cost to the network in deferring a project.
Therefore, the cost coefficient reduces to:

c= (project cost)

9



The KNAPSACK Integer Programming Problem

Single Dimensional Problem

The optimization model used in this study is a classic example of the
single dimensional "Knapsack Problemt , in which a knapsack has a total
maximum weight capacity, and a number of items can either be packed (decision
variable =1) or not packed (decision variable = 0). This is summarized
mathematically as follows:

Maximize "bjxj
j=1

Subject to •cx <_ B
J=1

and xj=Oorl

Where:

n: number of segments in selected network
xj: Decision variable, repair or not repair segment "jT , constrained to be 1
or 0
B : Total repair budget not to be exceeded

* cq: Cost to repair segment "j"
and all others are as defined above

As with all optimization problems, any constraint which contains an
inequality is converted to an equality by the addition of a "slack variable" of

D appropriate sign into the inequality. In this problem the budget constraint
contains a" u =constraint, therefore a slack variable is added to the budget
constraint to convert it to an equality.

This problem is the simplest example of a Linear, Integer Programming
problem and can be solved by any number of methods. A simple and
straightforward method of solution is the Branch and Bound Algorithm (Salkin &
Mathur, 1989). In addition, there are several heuristic approaches that are
computationally efficient and provide satisfactory results. A heuristic approach
was used here to simplify the computational process. Comparison of the
solution obtained with this approach to the Upper Bound indicates that it
provides a solution that is within 3 % of the Upper Bound.

The general solution approach to this problem is to calculate the benefit
to cost ratio for each repair option, and then sort the options in descending
order. The Linear Programming solution then becomes:
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x" = (1,.... 1, b */c ,0 ..... )

Where:
t is the smallest index which satisfies:

Xc >b;

b" - ]Y'xjc1J

and:

x*: The maximum value of the objective function for the LP solution
b: The total budget not to be exceeded
cq: Cost coefficient for segment uj"

0 xq: Decision variable for s" iment "j", set to I for all segments where j=1 to t-1

Note that this solution contains one fractional decision variable, xt, and is
therefore an infeasible solution to the intege programlming problem.

From this point there are a number of possible solutions to the IP
problem. The Upper Bound is found by setting xt to 1. This provides the
maximum value of the objective function, but is an infeasible solution since it
violates the budget constraint.

The Lower Bound is found by setting xY equal to zero, thereby making the
solution feasible, but producing a less than maximum value of the objective
function.

By recognizing that the value of the slack variable in the budgat constraint
becomes greater than zero in the Lower Bound solution, the value of the
objective function can be increased. Using a heuristic approach, additional
projects are added to the list until the slack variable becomes zero, or until no
further projects can be added without the slack variable becoming negative.

There are also a number of exact solution algorithms available for this
type of problem (Balas & Zemel, 1984, Martello & Toth, 1990). Those methods
that do not require the additional computational effort of sorting the options by
benefit/cost ratio are typically more efficient for large problems.

It should be noted that this procedure is conceptually similar to the Benefit
Cost Ratio and Incremental Benefit Cost Ratio (Shahin, et. al., 1985) methods.

Multi - Dimensional Problem

To solve the annual optimization problem for more than one available
repair option, a series of "multiple-choice" constraints for each segment may be
added. These constraints require only one repair option out of a set of possible
options be applied to each segment. The true optimization problem requires the

* 11



additional inclusion of multiple yearly budget constraints. This results in the
formulation of a "multi-period" knapsack problem. The combination problem of
multiple choice constraints and the multi-period constraints is referred to as a
"multi-dimensional knapsack problem." The general formulation of this problem
is as follows (Salkin & Mathur, 1989):

Maximize 1±[Ybx1 ]

Subject to T cxj _ BI
t-1 j-

and: x, =Oor1

±x, = 1 j=1, 2,...,p for each segment, for a total of "n" segments)

Where:

T: the total number of periods in the analysis
t: index for time periods
p: number of repair methods for each segment
Bt : repair budget not to be exceeded for period t
cq: Cost to repair segment "j" in period t, using method associated with
that segment and repair method (member of the appropriate subset)
N-: Benefit from repairing segment "j" in period "t"

0 and all others are as defined above.

This multi-dimensional model, while complex, is still solvable using
Branch and Bound Searcth Algorithms. The simpler, annual optimization model,

* with or without multiple choice constraints, can be solved for large values of "n"
using a number of techniques (Martello and Toth, 1990). As noted earlier,
dynamic programming solutions of the Knapsack IP problem are not efficient for
large values of "n".

While this approach was not used in this analysis, it is a logical extension
to the work outlined here. Expanding these results to a multi-dimensional
analysis would allow more direct comparison with Dr. Mohseni's results, and will
also provide a method of solution for the true optimization problem.
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RESULTS

Effects of Funding Level

Each of the three networks was analyzed using all three of the project
selection methods over a range of funding levels, based on a percentage of the
total rehabilitation needs of the network. The funding level begins at the
extreme low end of the range at 5 % of identifiable backlog, and continues
through 90 % of identifiable backlog.

Comparison of Benefits Gained

The performance curves for each method, as a function of the funding
level are provided below. The benefits gained from executing the project sets
selected by each method for each network are plotted against the funding level.

Network 1:

1) Maintenance District: North
2) Federal Aid Classes: Primary

Secondary
3) Functional Classes: Other Expressway/Freeway

Other Principal Arterial
Minor Arterial

4) Surface Types: PCC and AC

The resulting subset included 585 segments for a total of 61.06 miles of
roadway. The needs analysis generated a list of rehabilitation projects for 425
of the 585 segments in the network. The total cost for all rehabilitetion projects

* was $10,649,732.

Benfts at each Funding Level

2500D

20000 .

15M ....... .. ..... a "Kropuaci SOhIanM
-4--DELDOT PMAPSah9M

• ~~~~10000 •admSf

500000

0 10 20 30 40 50 60 70 80 90

• %Of Needs

Figure 1.
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The results from Network I can be summarized as follows:

1) The solutions for each method tend to converge at very both high and
very low funding levels.

2) The largest absolute differential between the solutions occurs in the
midrange funding levels, with decreasing differences as the solutions
converge at either end of the funding spectrum.

3) The knapsack solution generally yielded an increase in benefits, on a
percentage basis over the random solution, of twice the increase provided
by the PMAP Priority solution.

* 4) At high funding levels, the benefits provided by the random solution
approaches, and even exceeds those of the PMAP Priority solution,
indicating that the priority ranking system picked a number of low benefit
projects which drove the benefit coefficient down.

*0 Network 2:

1) Section Type: HPMS Sections only
2) Roughness Number:. .1<= SDI >=5
3) Surface Distress: .1<= SDI >=5HPMS Sections

* The resulting subset included 708 segments for a total of 114.89 miles of
roadway. This subset was limited to those segments included in the HPMS
system since the data available for these segments tended to be more complete
than that in the aggregate database. The needs analysis generated a list of
rehabilitation projects for 509 of the 708 segments in the network. The total cost
for all rehabilitation projects was $ 20,159,060.

Bendts at Each Funding Levul

2500o

*.-&-DELDOT PMAP sMAP ,

•10000

0.

0 10 20 30 40 so s0 70 s0 90
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Figure 2.
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The results from Network 2 can be summarized as follows:

1) As in the first network, the solutions for each method tend to converge
at very both high and very low funding levels. However, the convergence
is more pronounced.

2) The largest absolute differential between the solutions occurs in the
lower midrange funding levels, shifted somewhat downward from the
range observed in Network 1.

3) The difference between the Knapsack and PMAP Priority solutions
* was significantly smaller than in Network 1.

Network 3:

1) Maintenance District: North
2) Roughness Number: .1 <= SDI >=5

0 3) Surface Distress: .1<= SDI >=5

The resulting subset included 3200 segments for a total of 352.19 miles of
roadway. This large subset was deliberately limited to those segments that had
a value other than "null" for the RN and SDI. This prevented the system from

* generating large numbers of project requirements for segments where the data
was incomplete. The needs analysis generated a list of rehabilitation projects
for 2245 of the 3200 segments in the network. The total cost for all rehabilitation
projects was $75,183,724.

0 10wl2 at Each Funding L7Wo

1 1 15

20D

00
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The results from Network 3 can be summarized as follows:

1) The convergence between the random and PMAP Priority solutions is
more pronounced at the higher end of the funding spectrum than in the
Network 1, but somewhat less than that in Network 2. This may be an
effect of the somewhat lower quality data in Network 3, (recall that
Network 2 contained only HPMS sections), or there may in fact be no
trend toward less unique solutions with increasing network size.

2) The largest absolute differential between the solutions occurs in the
same lower midrange funding levels as in Network 2.

The overall performance of all three networks can be summarized by the
following points:

1) As expected, the benefits accrued by all the networks increase with
increasing funding.

2) With some minor variations in Network I which may be attributable to
the relatively small size of the network, the shapes of the performance
curves are markedly similar.

3) The Knapsack Selection method performed consistently better than
the PMAP Priority Selection method, and both of these "rational" methods
performed consistently better than the random selection method.

4) In Networks 2 and 3, the performance of PMAP Priority selection
method improves relative to the Knapsack solution more quickly than the
random selection as funding levels increase. At the 90% funding level,
the priority selection approaches the value of the Knapsack solution.
While all three solutions must arrive at the same repair strategy at 100%
funding, the faster improvement of the priority selection suggests that
more than just the inherent convergence of the solution may be
responsible.

A sophisticated priority system such as PMAP's implicitly contains
essentially the same objective criteria as the optimization routine contains
explicitly. However, the overall performance of the PMAP Priority selection
method was poorer than expected relative to the Knapsack solution.
Specifically, the priority selection consistently performed poorly in the 20 to 40%
funding ranges. In an attempt to determine the reasons for this relatively poor
performance, an analysis of the repair strategies developed by each was
conducted. This analysis uncovered a significant bias on the part of the PMAP
system toward selecting long segments for repair.

* 16



PMAP Lo•ig Segment Bias
The PMAP priority ranking system shows a distinctive bias towards

selecting longer segments for repair. This is especially marked at lower funding
levels, see- Figure 4. below. Figures 4 - 6 were developed from Network 1,
however, similar results are observed in the other networks.

Average Segment Length

0.4

0.35

0.3

-Knapsack" Solution

0.2 -- *l--DELDOT PMAP Solution
x [410Randomn Sort

S0.1S

0.05

0

0 20 40 60 s0 100

% Of Needs

Figure 4.

The bias results in significantly fewer segments being repaired, as shown
in Figure 5., although the total mileage of repaired road is not significantly
different as shown in Figure 6.

Total Segments Repaired

450

400

350

250 *Knapsack" Solution

-- df---DELDOT PMAP Solution

2......0.. -- -. Random Sort

100
0 ...

0

0 20 40 60 s0 100

% Of Neads

Figure 5.
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Total Miles Repaired
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Su20
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0
0 20 40 6o 8o 100
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Figure 6.

This bias is the result of the secondary selection criteria used by the
PMAP program to differentiate between segments of equal priority.

Since the PMAP priorities vary over a small range compared to the
number of segments, many segments have equal priority according to their
overall score level and the priority ranking factors. When this occurs a
secondary criteria must be used to determine which of the projects will come first
among each priority level. The PMAP program uses segment length. Those
projects identified by the "needs analysis" are sorted based on priority, and then
on segment length. A potential advantage of this criteria is to ensure that the
longer segments, which are typically more expensive to repair, get funded.
Without such a criteria, it is conceivable that at low funding levels large projects
could remain in the backlog virtually forever.

Once the projects are sorted by the composite key of increasing priority
number (lower priority segments have higher numbers) and descending length, a
simple routine is used to select projects until funding is exhausted. Beginning at
the top of the sorted project list, the search routine selects projects until the next
project in the list would exceed the funding limit. At this point the routine
"branches" and continues down the list until it finds a project it can afford. This
project becomes the next *node* and is included in the project list. The search
routine continues in a like fashion until either funding is totally exhausted or
there are no projects that can be funded with the remaining funds.
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Figure 4. indicates a decrease in the average segment length as the
funding level increases, but it remains consistently higher than the other
selection methods. At very low funding levels only the longest segment projects
within the highest priority group are included, this results in a very long average
segment length. Note that at the lowest funding levels, fewer of the longest
segment projects can be afforded, hence a slightly lower average segment
length is found. As funding levels increase, shorter projects enter into the
solution, decreasing the average segment length. However, since as each new
priority group enters the solution set, the segment length starts over at the
longest segment in that priority group, the average will always be longer than
any selection system that does not include a length bias.

In order to investigate the effects of different segment sorting methods
inside each priority level, a simple trial using the 10% solution set from Network
2 was run. In this network priority level 4 was the highest priority identified, and
at this funding level, only projects in priority level N4" were selected, as there was
insufficient funding at 10% to fund any projects lower than priority level 4. In
fact, not even all the priority level 4 projects were funded.

Three additional methods of sorting the priority level 4 projects were
attempted. In each case a simple routine, similar to that used by the PMAP
system, was used to select projects from the sorted project list until funds were
exhausted. First, the projects were sorted by a random number key. Next, the
list was sorted according to the predicted AADT over the segment. Finally, the
projects were sorted by B/C ratio. The results are plotted in Figure 7. The B/C
ratio sort gave the best benefit, however, the amount of increase was small
compared to the "optimalm solution given by the Knapsack solution.

Segment Sofitng Methods
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Figure 7.
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This would tend to indicate that the secondary sorting criteria has a small
effect on the overall performance of the ranking system. Therefore the most
benefit will be achieved by improvements to the primary ranking criteria, ttareby
getting more of the best projects into the higher priority categories. However,
the sorting criteria of BIC ratio would be fairly simple to implement in an existing
system and may be warranted given its slightly better performance and
somewhat more intuitively satisfying nature.

Effects of Changes in Performance Parameters

In the second phase of this work, the performance models used by the
PMAP program to predict the condition of a pavement segment were altered to
determine if such alteration significantly altered the projects selected for the
optimal solution.

PMAP uses Surface Distress Index (SDI) and Roughness Number (RN) to
calculate the value for Pavement Serviceability Index (PSI). Therefore, the
coefficients of the RN and SDI performance models were altered in such a way
that the pavement would deteriorate 30 % faster and 30 % slower than the
"normal" or default models. Note that this does not mean that the actual values
of RN or SDI were 30 % higher or lower than those given by the default models.
For reasons that will be described later, the network selected contained only
segments with SDI and RN values greater than 2. As a result the segments
were on the relatively flat portion of the deterioration curve, even in the
accelerated model. Therefore, the difference in predicted PSI was considerably
less than 30 %, (5 to 10 %) in most cases.

The performance models used to predict the RN and SDI values in PMAP
take the form of cubic polynomials as shown below:

RN = ao + a lt+a 2t 2 + a 3t3

SDI = ao+alt+a 2t2 + a 3 t3

By accelerating and decelerating the time base for each equation,
modified performance curves for each model were created. Figures 7. and 8.,
below illustrate the modified performance curves.
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SDI Model Coefficients
iltus, Rot. Decay Acc. Decay

a1 -0.2911900 -0.2240000 -0.3785000
IO__0.0126600 0.00750 0 0.0214000
I--0.000280 1-0.0001280 1-0.00061501

Table 4.

These modified model parameters were applied to a fourth network,
selected as follows:

Network 4:

1) Maintenance District: All
2) Pavement Type: Flexible
3) Roughness Number: 2 <= SDI >= 5
4) Surface Distress: 2 <= SDI >= 5

The resulting subset included 786 segments for a total of 119.92 miles of
roadway. This network was selected for two reasons. First, by choosing only
one pavement type, the recalibration of the model parameters only needed to be
done once. Second, by selecting RN and SDI values greater than 2, segments
with no data and the very poor segments that could have predicted RN and SDI
values of 0.0 using the default models were eliminated. This was intended to
prevent a bias in the results from the majority of the segments needing repair
regardless of the performance model.

Since many of the pavement sections included in the selection had RN
and SDI dates in 1992 and 1993, 1996 was used as the analysis year for this
procedure, so that the effects of the more or less rapid deterioration would be
more distinct. Using the default performance model parameters, the needs
analysis generated a list of rehabilitation projects for 440 of the 786 segments in
the network. The total cost for all of these rehabilitation projects was
$11,341,977. After altering the performance model parameters to allow for both
faster and slower deterioration, similar needs analyses were run, also for
analysis year 1996. A compilation of the results is shown below:

Total Projects Identified by Default Model : 440

Total Projects Identified by Accelerated Decay Model: 456

Total Projects Identified by Retarded Decay Model: 419

Using the PMAP Priority and Knapsack solutions, r - ject select sets were
selected at three funding levels. Budget levels of 5%, 30% and 60% of the total
needs identified by the default performance model needs analysis were used.
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By comparing the segments selected for repair by each method, a u%
Concurrence' factor was determined. This factor was defined as follows:

% Concurrence= Nunber of Projects Consistent w / Default Model * 100
Total Number of Projects Selected

Tables 5. through 10. list the results for each selection procedure at each
funding level.

6% Funding, PMAP Priority Selection
Performance Total Projects Number % ConcurrenceModel Selected Consistent w/
__Defaults

Default 20 N/A N/A
Retarded Decay 17 15 88%
Acc. Decay 25 18 72%
Table 5.

30% Funding, PMAP Priority Selection
Performance Total Projects Number % Concurrence
Mllodel Selected ConsIstent WI

_.. _ _ _ _ _ _ _ __•" .... Defaults L_

Default 104 N/A N/A
Retarded Decay 101 94 93%
Acc. Decay 108 101 94%
Table 6.

60% Funding, PMAP Priority Selection
Performance TotalProjects Number % ConcuTrence
Model Selected Consistent WI

_ _ _ _ _ _ _ __i_ i i iDefaults' _ _ _

Default 254 N/A N/A
Retarded Decay 241 241 100%
Ace. Decay 260 250 96%
Table 7.

5% Funding, Kna pack Selection
Pef•rmrnce TotaiProj0cfts ::'Number %• Concurrence
Model Selected Consistent wI
__...... . ____ , ______ Defaults _ _ _ _ _
Default 35 N/A N/A
Retarded Decay 33 30 91%
Ac. Decay 38 33 87%
Table S.
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30% Funding, Kn psack Selection
Performance Total Projects Number % Concurrence
Model Selected Consistent w/

Defaults
Default 165 N/A N/A
Retarded Decay 141 141 100%
Acc. Decay 157 147 94%
Table 9.

60% Funding, Kn psack Selection

Pwformance Total Projects Number % Concurrence
Model Selected Consistent w/

Defaults
Default 310 N/A N/A

-Retarded Decay 277 277 100%
Acc. Decay 304 296 97%
Table 10.

The above results indicate that accelerating or retarding the deterioration
of a pavement, within a certain range, has little or no impact on the selected
projects. In addition, the following points should be noted:

1) The PMAP long segment bias is responsible for the lower number of
segments selected by PMAP.
2) The trend for both selection systems is increasing concurrence as
funding levels increase.
3) The PMAP system has lower concurrence at any given funding level
than the knapsack, however, that may be the result of the fewer segments
being selected by the PMAP system.
4) The concurrence of the accelerated model is slightly less than that of
the retarded model. This is because in the accelerated case, the
pavements are on a steeper gradient of the curve. This indicates that at
some point the difference in calculated PSI does start to make a
difference in the projects selected.

Shape of Solution Space

The final phase of this study attempts to assess the shape of the solution
space for this problem. Is the solution space highly curved, or relatively flat? In
order to investigate this, the random project selection method was modified to
perform multiple selections at each funding level. A series of trials were
executed, each resulting in a new solution set with new benefit coefficients. By
using a program written in Microsoft VISUAL BASIC, (see Appendix B for partial
program listing), 1000 random project selections were made to meet each
funding level. The results were then sorted in increasing order for each funding
level. Therefore trial I is the lowest value of 1000 trials at each funding level,
regardless of which trial actually produced that benefit level. The readability of
the figure was improved by arranging the trials in order of increasing benefit, this
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does not imply that trials themselves produced increasing benefits as the trial
number increased. Also in the interests of readability, the results were

* averaged, 100 trials at a time to produce a total of 10 data points. These 10 data
points, along with the highest and lowest randomly generated values, and the
Knapsack solution benefit coefficient for the same set of road segments were
then plotted in Figure 9. The Knapsack solution is the highest value in all cases
and is plotted at the far right of Figure 9.

Modified Monte Carlo Results

250O0lI5%

I20%

Benemi I0

*70%

* ~ Figure 9.

While the number of trials executed is small compared to a what would be
required for a true Monte Carlo optimization routine, the general shape of Figure
13 indicates that the majority of the feasible solutions to this problem fall within a
narrow benefits band, and that the solution space is fairly flat, with a steeper
gradient immediately around the optimum. This would suggest that Monte Carlo
routines would be an especially inefficient choice for solution of this problem.
However it should be noted that the difference between the 'optimalM solution
and the highest random selection decreases at very high funding levels, which is
expected, since as noted earlier, the, solutions converge at very high funding
levels.

OPPORTUNITIES FOR FURTHER RESEARCH

* Further Effects of Network Size

The trend in the networks selected indicates a tendency for less unique
solutions as network size increases, as indicated by the somewhat earlier
convergence of the performance curves. This may indicate that the solution
space becomes flatter with increasing network size as well as increasing
funding. Additional research could be done on the effects of network size on the
uniqueness of the optimal repair strategy.
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Multi-Dimensional Knapsack Solutions

The logical extension of the first phase of this work would be the inclusion
of multiple choice constraints to allow for selection of multiple repair options for
each segment. Following this stage, the extension of the work to a multi-period
analysis would result in a "true" optimization mode!.

Dr. Mohseni states in his 1993 paper that Integer Programming solutions
for this problem were not possible. He therefore used Linear Programming,
which, because of the integer nature of the problem, does not guarantee an
optimal solution. Multi-dimensional Knapsack solutions to both the annual and
true optimization problems may provide an approach that will provide either an
exact or approximate integer solution to the problem.

Sorting Methods for Segments of Equal Priority

Since any practical priority ranking system will always have a small
number of priority levels compared to the number of segments being ranked, this

0 "secondary sorting criteria, is of some importance. Even though the results of
this study show that altering the secondary sorting criteria did not raise the
performance of the priority ranking to the level of the Knapsack solution, there
was still an increase of almost 11% in benefits by switching from the length
based criteria to the B/C ratio criteria. Depending on the costs of

* implementation, it may be worthwhile to examine using different secondary
sorting criteria to enhance the performance of existing priority ranking systems.
At the least, designers of new priority ranking implementations should give
careful consideration tr, the secondary criteria used since it does appear to have
an impact on performance.

Effects of Altering Priority Factors

Altering the priority factors used to determine the relative priority of each
segment in the network may have a significant affect on the solution provided by

* the priority ranking system. Since altering the secondary sorting criteria resulted
in only a small increase in performance, it is reasonable to assume that any
additional benefit gained from this system would have to be from altering the
primary sorting criteria, which are the priority factors.

Further Effects of Performance Models

Altering the performance of a pavement over time has some effect on the
optimal repair strategy. However, the results of this study indicate that the effect
may not be as pronounced as previously believed. Further research into this

* question could focus on the effects over a broad spectrum of model
performance, thus providing a "performance curve" that would indicate the range
over which model performance has minimal effect on the optimal repair strategy
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selected by a given method. These curves would probably be unique for each
selection method. They could then be used to determine the level of accuracy

* needed in a performance model to avoid adversely affecting the optimal repair
strategy selection process used in a particular pavement management system.

Differences Between Optimal Annual and True Solutions

* Following extension of the annual knapsack solution presented here to a
true optimization model, a comparison between the projects selected for
execution under each could be done. The degree of concurrence between the
projects selected for execution by each approach would be indicative of whether
the additional computational effort involved in the multi-dimensional solution is

0 worthwhile.

CONCLUSIONS

Phase 1
40

The results of the Mohseni study indicated a significant increase in the
overall performance of the network by using any of the optimization techniques
over the ranking system and random selection. This basic premise is borne out
in this study across a broad spectrum of funding levels. The performance of any

* rational project selection procedure is better than a random or ad hoc approach;
and optimization models perform better than even a relatively sophisticated
priority ranking system. Table 11. lists the percent increase in benefits obtained
by using both the PMAP Priority and the Knapsack IP solutions over the Random
approach for Network 3.

*% Increase In Benefits 80% Funding
Funding: PMAP %Knapsack %
Level Incease Incease

over over
____Random Random

5 33% 274%
0 10 43% 210%

20 78% 153%
30 41% 112%
40 30% 80%
50 30% 80%
60 30% 44%
70 19% 29%

1 90 7% 8%
Table 11.
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For ease of reference, Table 1. is reproduced below:

% Increase in VMT-A
methoR VMT-A, m(billion %

vehiTe miles) Increase
pRandom SelectionWs 2.98

Lon* RanI e Optimization 6.02 102%
linear Programming 5.63 89%
Table 1.

Comparing Tables 1. and 11. shows that at the 80% funding level,
performance variation between the Randc,,n Selection, Worst-First Ranking, and
IBC Optimization methods varies over a considerably larger range in the

Mohseni study than was found between the Random, PMAP Priority and
Knapsack solutions used here. In addition, the convergence of the solutions at
the extremes of the funding spectrum found in this study are not apparent in Dr.
Mohseni's work.

0
Three additional points should be highlighted about these results:

1) The performance of the ranking system is especially poor at lower
midrange funding levels, and steadily improves with increasing funding.
Therefore, depending on the level of funding available, the priority system
may provide adequate solutions.

2) No attempt was made to alter the priority coefficients used in the
PMAP program from their default values. It is possible that "tweaking"
these factors could significantly improve the performance of the system.

3) The heuristic Knapsack solution applied to this problem is extremely
simple and easy to implement. An exact branch and bound solution is not
much more difficult. Given the simplicity of these methods, they may
warrant implementation in place of existing priority ranking systems.

Phase 2

The affects of altering the performance models were found to be
considerably less than currently believed. A modest acceleration and

0 deceleration of the pavement deterioration had virtually no effect on the project
sets selected for execution at reasonable funding levels. This was true for both
the PMAP and Knapsack solutions, even though the two selection methods
provided different sets of projects and different net benefits to the network.
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Phase 3

Based on the results of the modified Monte Carlo routine, the shape of the
solution space of this problem is estimated to be relatively flat, except in the
immediate vicinity of the optimum. The immediate significance of this finding is
that the optimal repair strategy is fairly unique. This means that small changes
in the projects selected for execution can have a significant impact on the overall
performance of the repair strategy, as measured by the benefit gained.
However, as the funding available to repair the network increases as a
percentage of the total needs, the "uniqueness" of the optimal solution
decreases. This is illustrated by both Figure 13., and by the convergence of the
performance curves (Figures 1., 2., and 3.) at the higher funding levels.

0

0

'0 
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Appendix B. Monte Carlo Program BASIC Code

The code listing below is the "meatr of the Monte Carlo routine written to
perform the analysis of the shape of the solution space. The various forms with
their associated controls that are part of the Visual Basic environment are not
included.

Sub Commandl_Click 0
Rem Set variables
Rem Can be set by V9 Controls If program is to be
Rem used for multiple trials on different data files
numseg • 509
t a 1000
budget = 20159060
Rem dimension arrays
ReOlm ax(10, numseg), temp(10), results(20, t), temp2(2)
Rem read data from file
Open "c:\vb~samples~data1.csv" For Input As #1
For x a I To numseg
For y" 2 To 10
Input #1, ax(y, x)
Next y
Next x
Rem build loop for multiple trials
For counti n I Tot
Rem add random sort key to array
For y w I To numseg
Randomize Timer
ax(1, y) = Rnd(12398)
Next y
Rem Sort routine for putting segments In random key order
nl - numseg -1
Forx a 1 Toni
y-x
z~y+l
For I a z To numseg
If ax(l, y) > ax(l, i) Then y =i
Next I
Fori - I To 8
temp(l) -ax(i, x)
ax(, x) -a x(i, y)
ax(1, y) = temp(i)
Nexti
Nextx
Rem Add up benefits for each funding level
totalben - 0
totalcost - 0
For count2 - 1 To numseg
totalben m totalben + ax(10, count2)

-to-tu - totalcost + ax(7, count2)
If Abe(totalcoat - .05 * budget) < Abs(.05 * budget - results(1, counti)) And (totalcost - .05
budget) <- 0 Then results(1, counti) a totalcost: results(2, counti) a totalben
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If Abs(lotalcost -. 1 *budget) < Abs(.1I * budget - results(3, counti)) And (totalcost - .1 * budget)
<=0 Then results(3, counti) = totalcost: result(4, counti) atotalben
If Abs(totalcost - .2 * budget) < Abs(.2 *budget - results5, counti)) And (totalcost - .2 *budget)

* cm< 0 Then results5. counti) a totalcost: result(6, counti) = totalben
If Abs(Iotalcost - .3 *budget) < Abs(.3 *budget - resufts(7, counti)) And (totalcost - .3 * budget)
<= 0 Then results(7, counti) a totalcost: results(8, countl) =totalben
If Abs(lotalcost - .4*- budget) < Abs(.4 * budget - results(9, counti)) And (totalcost - .4* budget)
<= 0 Then results9, counti) z totalcost: results(10, counti) = totalben
If As 1otkx .5 -budget) <b(.5 -budget-rsu~l s1, countl)) And (totalcost - .5 *budget)

* <= 0 Then resuLts(1 1, counti) a totalcost: results(1 2, counti) = totalben
If Abs(totalcost - .6 - budget) < Abs(.6 -'budget - results(1 3. counti)) And (totalcost - .6 *tIbudget)
<= 0 Then results(1 3, counti) m totalcost: results(1 4, counti) a totalben
If Abs(totalcost -.7 - budget) < Abs(.7 - budget.- results(5, counti)) And (totalcost - .7'* budget)
<= 0OThen resufts(5, counti) atotalcost: resu~lts6, countl) atotalben
If Ab"otalcost - .8* budget) < Abs(.8 *'budget - results(17, counti)) And (totalcost - .8 *'budget)
<=c 0 Then results(1 7, counti) m totalcost: resu~lts8, counti) mttle
If Abs(totalcost - .9 * budget) < Abs(.9 * budget - resu~lts9, counti)) And (totalcost - .9 * budget)
<m 0 Then results19, counti) = totalcost: results(20, counti) mtotalben

Next count2
Next counti
Rein Soil results in Increasing benflt order
For countO a 2 To 20 Step 2
n2 =t -l
For x a I To n2
ymx
zay + 1
For I = z To t
If resultscountG, y) > resultscount6, Q) Then y i
Next I
ltemp2(1) = resultscountO, x)
resajht(countS, x) a resulbs(countS, y)
results(count6, y) m temp2(1)
temp2(2) = results(countS - 1, x)
resulbs(count6 - 1, x) z resultscountS - 1, y)

* ~results(countS - 1, y) z temnp2(2)
Next x
Next countS
Open c:~kvb%.mples~reuf.out' For Output As #2
For count3 a 1 To t
Write 02, results(1, counI3), results(2, count3), result(, count3), results(4, count3), results(5,

* ~count3l), results6, count3), results(, count3), results(8, count3), results(9, count3), results(10,
count3). results(1 1, count:3), results(1 2, count3), results(1 3, count3), results(1 4, count3),
results(1 5. count3), resutts(168, coun[3), results(1 7, count3), resu~lts8, count3), results(1 9,
count3), resufts(20, count3)
Next count3
Close 02

* EMdSub

33


